Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Peter Nockemann and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany

Correspondence e-mail:
gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.016 \AA$
R factor $=0.034$
$w R$ factor $=0.067$
Data-to-parameter ratio $=22.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(tetraethylammonium) di- μ-bromobis[dibromomercurate(II)], $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{2} \mathrm{Br}_{6}\right]$

The structure of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{2} \mathrm{Br}_{6}\right]$ contains dinuclear $\left[\mathrm{Hg}_{2} \mathrm{Br}_{6}\right]^{2-}$ species as isolated anions. Charge balance is achieved by ordered $\left[\mathrm{Et}_{4} \mathrm{~N}\right]^{+}$cations. An inversion centre is located at the centre of the $\left[\mathrm{Hg}_{2} \mathrm{Br}_{6}\right]^{2-}$ unit.

Comment

The crystal structures of several trihalogenomercurate(II) salts have been reported and show a wide variety of stereochemical arrangements, as listed in a recent overview (Serezhkin et al., 2001). Many different types of halogenomercurate(II) anions were observed, dependent on the stoichiometry as well as on the size and charge of the cation. With the smaller $\left[\mathrm{Me}_{4} \mathrm{~N}\right]^{+}$cation, for example, the structure consists of trigonal planar $\left[\mathrm{HgBr}_{3}\right]^{-}$anions, which are connected into infinite chains by long $\mathrm{Hg} \cdots \mathrm{Cl}$ contacts (White, 1963). The same anionic structure was found for $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{HgCl}_{3}\right]$ (Sandström \& Liem, 1978).

The structure of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{2} \mathrm{Br}_{6}\right]$, (I), contains isolated bitetrahedral $\left[\mathrm{Hg}_{2} \mathrm{Br}_{6}\right]^{2-}$ units consisting of two tetrahedra

Figure 1
Packing diagram of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{2} \mathrm{Br}_{6}\right]$, viewed down the a axis.

Received 13 August 2002
Accepted 27 August 2002
Online 13 September 2002

Figure 2
Bitetrahedral $\left[\mathrm{Hg}_{2} \mathrm{Br}_{6}\right]^{2-}$ units sharing one common edge. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3

$\left[\mathrm{Et}_{4} \mathrm{~N}\right]^{+}$cation. Displacement ellipsoids are drawn at the 50% probability level.
sharing one common edge. Two short bonds of 2.5085 (12) and 2.5319 (13) \AA, and two long bonds to the bridging bromide ions of 2.7360 (11) and 2.7618 (11) \AA are observed. This type of distorted tetrahedral coordination is also found in other complexes with discrete dimeric $\left[\mathrm{Hg}_{2} X_{6}\right]^{2-}$ units $(X=\mathrm{Cl}, \mathrm{Br}$, I), e.g. in $\mathrm{MgHg}_{3} \mathrm{Cl}_{8} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Brodersen et al., 1983), $\left(\mathrm{Ph}_{3} \mathrm{AsOH}\right)_{2} \mathrm{HgBr}_{4}$ (Harris et al., 1967) and $\left(\mathrm{NEt}_{4}\right)\left[\mathrm{HgI}_{3}\right]$ (Goggin et al., 1982). In (I), charge balance is achieved by ordered $\left[\mathrm{Et}_{4} \mathrm{~N}\right]^{+}$cations (Fig. 3), which are quite remote from the anions, although there are H atoms in the range 2.7-3.1 \AA from Br^{-}, with $\mathrm{Br} \cdots \mathrm{H}-\mathrm{C}$ angles in the range $160-170^{\circ}$. An inversion centre is located an the centre of the $\left[\mathrm{Hg}_{2} \mathrm{Br}_{6}\right]^{2-}$ unit.

Experimental

$1 \mathrm{mmol}(0.1717 \mathrm{~g})$ of tetraethylammonium bromide, $\left(\mathrm{Et}_{4}\right) \mathrm{NBr}$, and $1 \mathrm{mmol}(0.2715 \mathrm{~g})$ of mercuric bromide, HgBr_{2}, were dissolved by stirring in 50 ml methanol at 323 K until a clear solution was obtained. Single crystals were obtained when the solution was allowed to stand at room temperature for 2 d .

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{2} \mathrm{Br}_{6}\right]$
$M_{r}=1141.14$
Monoclinic, $P 2_{1} / c$
$a=9.1148$ (16) \AA
$b=10.8302$ (13) \AA
$c=16.140(4) \AA$
$\beta=107.377(17)^{\circ}$
$V=1520.5(5) \AA^{3}$
$Z=2$

```
\(D_{x}=2.492 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation
Cell parameters from 10530
    reflections
    \(\theta=2.3-25.0^{\circ}\)
    \(\theta=2.3-25.0^{\circ}\)
\(\mu=17.97 \mathrm{~mm}^{-1}\)
    \(T=293\) (2) K
    Prism, colourless
    \(0.20 \times 0.15 \times 0.10 \mathrm{~mm}\)
```


Data collection

Stoe Imaging Plate Diffraction
System (IPDS-I) diffractometer φ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1998)
$T_{\min }=0.051, T_{\max }=0.166$
10530 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.067$
$S=0.81$
2665 reflections
119 parameters
H -atom parameters constrained

2665 independent reflections
1450 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.097$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-12 \rightarrow 12$
$l=-19 \rightarrow 18$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0161 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.66 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.11 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00203 (12)

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Hg} 1-\mathrm{Br} 2$	$2.5082(12)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.547(11)$
$\mathrm{Hg} 1-\mathrm{Br} 1$	$2.5322(13)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.544(11)$
$\mathrm{Hg} 1-\mathrm{Br} 3^{\mathrm{i}}$	$2.7359(11)$	$\mathrm{C} 1-\mathrm{C} 8$	$1.509(13)$
$\mathrm{Hg} 1-\mathrm{Br} 3$	$2.7618(11)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.525(14)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.514(11)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.521(14)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.521(11)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.493(13)$
$\mathrm{Br} 2-\mathrm{Hg} 1-\mathrm{Br} 1$	$122.15(5)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2$	$110.9(7)$
$\mathrm{Br} 2-\mathrm{Hg} 1-\mathrm{Br} 3$	$109.82(4)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$107.2(6)$
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{Br} 3$	$109.77(4)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$108.8(7)$
$\mathrm{Br} 3^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{Br} 3$	$90.82(3)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 8$	$115.7(8)$
$\mathrm{Hg} 1^{i}-\mathrm{Br} 3-\mathrm{Hg} 1$	$89.18(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	$113.8(8)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$109.2(7)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$116.1(7)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6$	$108.9(7)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1$	$114.2(8)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6$	$111.9(7)$		

Symmetry code: (i) $-x, 1-y,-z$.

H atoms were fixed at calculated positions using the AFIX23 and AFIX33 commands in SHELXL97 (Sheldrick, 1997). The highest peak is located $0.92 \AA$ from Br 1 and the deepest hole $1.09 \AA$ from Hg 1 .

Data collection: $X-A R E A$ (Stoe \& Cie, 2001); cell refinement: X-STEP32 (Stoe \& Cie, 2000); data reduction: X-RED (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Brodersen, K., Pezzei, G. \& Thiele, G. (1983). Z. Anorg. Allg. Chem. 499, 169174.

Goggin, P. L., King, P., McEwan, D. M., Taylor, G. E., Woodward, P. \& Sandström, M. (1982). J. Chem. Soc. Dalton Trans. pp. 875-882.
Harris, G. S., Inglis, F., McKechnie, J., Cheung, K. K. \& Ferguson, G. (1967). J. Chem. Soc. Chem. Commun. pp. 442-444.
Sandström, M. \& Liem, D. H. (1978). Acta Chem. Scand. Ser. A, 32, 509-514.
Serezhkin, V. N., Serezhkina, L. B., Ulanov, A. S. \& D’yachenko, O. A. (2001).
Crystallogr. Rep. 46, 3, 475-484.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1998). X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2000). X-STEP32. Version 1.06f. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2001). X - $A R E A$ (Version 1.15) and X-RED (Version 1.22). Stoe \& Cie, Darmstadt, Germany.
White, J. G. (1963). Acta Cryst. 16, 397.

